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Studies in the history of probability and statistics. XIV
Some incidents in the early history of biometry
and statistics, 1890-94 *

By E. S. PEARSON
University College London

1. INTRODUCTION

Perhaps the two great formative periods in the history of mathematical statistics were
the years 1890-1905 and 1915-30. In both, the remarkable leap forward was made in
answer to a need for new theory and techniques to help in solving very real problems in
the biological field. In the earlier years the original questions posed concerned the inter-
pretation of data bearing on theories of heredity and evolution; in the later period the
first call was to sharpen and develop the tools used in agricultural experimentation.

There is considerable fascination in trying to find out how things looked at the time to
the men concerned in such pioneer movements, from what background they started and
what was the combination of circumstances which lead to the particular lines of advance
which they followed. Below I shall try to describe some of the history of the first few
years of the 1890-1905 period. A good deal of this has already been put on record, for
example, by K. Pearson (1906, 1930) and I shall draw freely on this material, but the
availability of certain letters between Francis Galton (1822-1911), F.Y. Edgeworth
(1845-1926), Karl Pearson (1857-1936) and W. F. R. Weldon (1860-1906)t has made it
possible to add some illuminating personal touches to what is already on record.

The final event which brought about the association of Pearson and Weldon, leading
10 years later to the founding of Biometrika, was Weldon’s election in 1890 to the Jodrell
Chair of Zoology at University College, London where Pearson had been Professor of
Applied Mathematics since 1884. But to understand the basis of the co-operation between
these two men we must look still further back. The threads were gathered from many
sources.

In the second half of the 1880’s Pearson was by profession an applied mathematician,
a good deal of whose teaching was to students of engineering. Between 1884 and 1893 he
had first prepared for the press W. K. Clifford’s unfinished manuscript of The Common Sense
of the Exact Sciences and had then undertaken the far more arduous task of completing
Isaac Todhunter’s A History of the Theory of Elasticity ; the second volume of this, containing
some 1300 pages were almost entirely Pearson’s contribution.

But throughout the ’80’s his research energies were also occupied in a quite different
direction, in the study of mediaeval and Renaissance German literature and folk lore. This
work is recorded in the series of essays, most of them first given as lectures, which were
later published in T'he Ethic of Freethought (1888) and The Chances of Death (1897). The

* This article is enlarged from a talk originally given to students at University College in 1960 and
later, in 1961, at Princeton University from where it was issued as No. 45 in the Statistical Techniques
Research Group Reports (1962).

t Many of the letters are in possession of University College London with whose permission they are
quoted.
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link between these investigations and T'he Grammar of Science of 1892 lay as he wrote
himself in a ‘fundamental note of the author’s thought, namely : the endeavour to see all
phenomena, physical and social, as a connected growth, and describe them as such in the
briefest formula possible’. The manner in which his applied mathematics could best be
harnessed in this endeavour was at first less obvious; but several events helped to shape
the course of his activities.

Early in 1889, shortly after its appearance, he had read Galton’s Natural Inheritance.
From the paper which he presented soon afterwards to a small discussion club* it would
seem that he was then not altogether ready to accept Galton’s approach and was perhaps
rather critical of the popular way in which Galton expounded his subject. But it is clear
from what he wrote at a much later date (see E. S. Pearson, 1938, pp. 18-19) that from
this time onwards he began to be aware of a door which might be opened into new and
exciting fields.

Another lead opened up at this juncture. Pearson had attended Todhunter’s classes
when at Cambridge between 1876 and 1879, and his later connexion with 4 History of the
Theory of Elasticity may have increased his interest in Todhunter’s earlier publication, 4
History of the Mathematical Theory of Probability. At any rate when in 1890 he applied for
the vacant Lectureship in Geometryt at Gresham College in the City of London, he
included among the subjects which he offered to present, ‘graphical statistics’ and ‘the
theory of probability’, as subjects likely ‘to supply a want felt by clerks and others
engaged during the day in the City’.

The first eight of the Gresham Lectures, given in March and April 1891, fell under the
heading: ‘The Scope and Concepts of Modern Science’; they contained the material later
developed and enlarged in The Grammar of Science (1892). The first edition of this book
had chapters on ‘Cause and Effect—Probability’ and on ‘Life’, but the treatment follows
Pearson’s philosophic approach to scientific concepts built up during the 1880’s, i.e.
belongs to what may be termed the pre-Galton-Weldon period of his development.

In the same way the second series of Gresham Lectures under the general heading ‘The
Geometry of Statistics and the Laws of Chance’ began with twelve lectures (November
1891, January and May 1892) which appear from the syllabuses (E. S. Pearson, 1938,
pp. 142-53) to have been concerned with a somewhat formal account of methods of
presentation of descriptive statistics.

It is only later, from November 1892 through 1893 and 1894, that we begin to see the
subject taking a new life: the introduction of experiment; the comparison of theory with
observation, whether the latter resulted from coin tossing or measurements taken on
organs of certain groups of animals; use of the mean, the standard deviation and the
coefficient of correlation; frequency curves, symmetrical, skew and double humped ; prob-
lems of evolution; of differential death rates and selection; illustrations made on data of
Galton and Weldon; the study of racial differences through measurement of human skulls.

* This small forward-looking club had been formed in 1885 by a group of men and women who were
convinced that some of the social problems of their day could only be furthered by a deeper under-
standing, based partly on historical research, of the relationship between the sexes. It was for the
light which it might throw on the laws of heredity that Pearson had picked on Galton’s Natural
Inheritance for review. Gaussian distributions and the calculus of probabilities were not of primary
interest to the Club members.

T The duty of the Lecturer seems to have been to give a dozen end-of-the-day lectures a year to an
extra mural audience.
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It seems to me that reading through these old syllabuses of 1891-94 we can get in
summary form the picture of how under the stimulus of contact with Weldon at Uni-
versity College—and here I would place Weldon’s influence before that of Galton—the
applied mathematician in Pearson had at last discovered what he was needing, a field in
which his special powers could be brought into action in solving some of the problems of
life—metron applied to bios.

Weldon approached the unborn subject of biometry from a quite different angle. He
had taken the Cambridge Natural Science Tripos in 1881, with zoology as his principle
interest. After a period occupied in research and demonstrating he had been appointed in
1884 to a University Lectureship in Invertebrate Morphology. Having much of the out-
look of a field naturalist, he spent many of his vacations when at Cambridge and later in
collecting and ‘dredging’, sometimes abroad and often, after its completion, at the Marine
Biological Laboratory in Plymouth.

He had started as most of the younger men of his day with an immense enthusiasm for
the Darwinian theory of natural selection and sought the opportunity to contribute to
the proofs of what could be described as only a working hypothesis. He had turned first
to the current morphological and embryological methods of attack, but by the late 1880’s
he was beginning to doubt whether much progress could be made this way. So it was that
his thoughts began to turn to the study of variation and correlation in organic characters.
It was at this juncture that Galton’s Natural Inheritance brought him sudden illumination.
Here, he felt, were the statistical methods of measurement, description and analysis which
might help to establish evidence supporting the Darwinian theory.

His paper of 1890, showing that the distributions of four different measurements (ex-
pressed as ratios to total length) made on several different local races of the shrimp
(Crangon vulgaris) closely followed the normal or Gaussian law, was almost certainly the
first paper in which statistical methods were applied to biological types other than man.
In the statistical treatment of the data he had received help from Galton as a referee, but
the credit for making the vast number of measurements and for seeing the bearing of such
results on the problems of evolution was his own. A second paper in the series (1892) gave
the coefficients or correlation between organs in the same individual and compared these
for the four local races.

These two early papers were but first steps, showing that the simple models of statistical
theory then current, the univariate and bivariate normal distributions, were relevant to
zoological data. The further programme of research which was taking shape in his mind
was to be set out in the third paper (1893, p. 329), where he wrote:

It cannot be too strongly urged that the problem of animal evolution is essentially a statistical
problem: that before we can properly estimate the changes going on in a race or species we must
know accurately (a) the percentage of animals which exhibit a given amount of abnormality with
regard to a particular character; (b) the degree of abnormality of other organs which accompanies a
given abnormality in one; (c) the difference between the death rate per cent. in animals of different
degrees of abnormality with respect to any organ; (d) the abnormality of offspring in terms of the
abnormality of parents and vice versa. These are all questions of arithmetic; and when we know the
numerical answers to these questions for a number of species we shall know the deviation and the
rate of change in these species at the present day—a knowledge which is the only legitimate basis
for speculations as to their past history, and future fate.

To handle these questions with any degree of assurance required in fact something more
than arithmetic—the development of a more advanced theory of mathematical statistics.
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Weldon’s own mathematical knowledge at this period was limited and he realized that
much more would be needed if the new tools were to deal adequately with the problems he
began to see ahead. He set about removing this disadvantage in two ways; by himself
beginning a study of the great French writers on the calculus of probability; and by
seeking the co-operation of a mathematician in this project of demonstrating Darwinian
evolution by statistical inquiry. After failing to get help from Cambridge he turned very
naturally to his colleague Karl Pearson at University College.

In this sketch of antecedents I have not attempted to give any account of Francis Galton.
His position as friend and counseller of the two younger men cannot be questioned ; it was
he who had taken the initial step in developing the ideas of correlation and regression which
were to hasten the introduction of quantitative analysis into fields of biological, medical
and sociological research. But in 1890 Galton was 68 years old, a man of established
reputation whose long history of achievement has been told elsewhere. It was Weldon
and Pearson who were to bring a fresh impetus into the field and it is their approach to our
period of history which is therefore of special interest.

In the pages which follow I shall try to bring out some of the human side of the venture:
the conflict of view-points of the biologist and the mathematician ; the time so often taken,
when on the fringe of the unknown, to see that next step forward which now seems so
obvious to us, years afterwards, the enthusiasm which could lead the protagonists, though
attached to the same College, to speed a second letter by the midnight post with some
modified calculations after a first, sent on the same evening. I shall deal almost entirely
here with problems coming under the head of variation, hoping at a later date to introduce
some of the discussions on correlation.

2. THE PLACE OF THE NORMAL CURVE

Whether we turn to Natural Inheritance, to the correspondence between Galton, Weldon
and Pearson or to the Notes of Pearson’s statistics lectures taken down in 1894-96 by
Udny Yule (1871-1951), we see the central, predominating place which the Error Curve
and the Binomial held in statistical thinking in 1890. As a result some effort was needed
to break free from certain traditions. Starting from the work of De Moivre in 1733,* what
we now call the Normal Curve was first derived as a mathematical approximation to the
point binomial. Later on, when the Normal Curve was found to give an admirable fit to
numerous recorded distributions of errors of observation, it had become customary to
explain this good graduation in terms of a theory of the super-position of a series of
elementary errors; text books on the Theory of Errors contained, for example, so called
‘proofs’ of the normal law.}

Galton had given to this idea a visual significance, by making a small mechanical model,
often termed his Quincunx, and fully described with a diagram on pp. 63-5 of Natural
Inheritance. In this model, lead shot from a funnel are dropped onto a succession of rows
of equally spaced pins and collected below in a number of vertical compartments. In the

* Published in the Supplementum to his 1730 Miscellanea Analytica.

1 As a reaction to this view among astronomers I remember how Sir Arthur Eddington in his Cam-
bridge lectures about 1920 on the Combination of Observations used to quote the remark that ‘to say
that errors must obey the normal law means taking away the right of the free-born Englishman to
make any error he darn well pleases !’
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happy phrasing which he used when appealing to his reader’s imagination, Galton
wrote

‘The shot passes through the funnel and issuing from its narrow end scampers deviously down
through the pins in & curious and interesting way ; each of them darting to the right or left, as the
case may be, every time it strikes a pin. The pins are disposed in a quincunx fashion, so that every
descending shot strikes against a pin in each successive row. ...The outline of the columns of shot
that accumulate in successive compartments approximates to the Curve of Frequency, and is closely
of the same shape however often the experiment is repeated. . ..

The principle on which the action of the apparatus depends is, that a number of small and inde-
pendent accidents befall each shot in its career. In rare cases, a long run of luck continues to favour
the course of a particular shot towards either outside place, but in the large majority of instances the
number of accidents that cause Deviation to the right, balance in a greater or less degree those that
cause Deviation to the left....’ ‘

Possibly for use in his Gresham College Lectures on the Theory of Probability given in
1893, Pearson constructed a modification of Galton’s model, in which the shot fell onto a
succession of rows of small triangles projecting from the back-board, which could be pro-
gressively stepped sideways from row to row. As a result the chance of a shot bouncing
to the right (p) was not equal to that of it bouncing to the left (). The distribution collected
in the compartments should then not be symmetrical, but correspond roughly to the terms
of the binomial (¢g+p)* with p * gq.

The emphasis which Galton placed on the Normal curve can be best illustrated by
quoting some further passages from his Natural Inheritance.

I need hardly remind the reader that the Law of Error upon which these Normal Values are based,
was excogitated for the use of astronomers and others who are concerned with extreme accuracy of
measurement, and without the slightest idea until the time of Quetelet that they might be applicable
to human measures. But Errors, Differences, Deviations, Divergencies, Dispersions, and individual
Variations, all spring from the same kind of causes. Objects that bear the same name, or can be
described by the same phrase, are thereby acknowledged to have common points of resemblance,
and to rank as members of the same species, class, or whatever else we may please to call the group.
On the other hand, every object has Differences peculiar to itself, by which it is distinguished from
others.

This general statement is applicable to thousands of instances. The Law of Error finds a footing
wherever the individual peculiarities are wholly due to the combined influence of a multitude of
‘accidents’, in the sense in which that word has already been defined. All persons conversant with
statistics are aware that this supposition brings Variability within the grasp of the laws of Chance,
with the result that the relative frequency of Deviations of different amounts admits of being
calculated, when those amounts are measured in terms of any self-contained unit of variability, such
as our @ (pp. 54-5).

Again, in a section headed T'he Charms of Statistics, we find

It is difficult to understand why statisticians commonly limit their inquiries to Averages, and do
not revel in more comprehensive views. Their souls seem as dull to the charm of variety as that of
the native of one of our flat English counties, whose retrospect of Switzerland was that, if its
mountains could be thrown into its lakes, two nuisances would be got rid of at once. An Average is
but a solitary fact, whereas if a single other fact be added to it, an entire Normal Scheme, which
nearly corresponds to the observed one, starts potentially into existence.

Some people hate the very name of statistics, but I find them full of beauty and interest. When-
ever they are not brutalized, but delicately handled by the higher methods, and are warily inter-
preted, their power of dealing with complicated phenomena is extraordinary. They are the only
tools by which an opening can be cut through the formidable thicket of difficulties that bars the path
of those who pursue the Science of man (pp. 62-3).

Finally, under Order in Apparent Chaos, he writes

I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic
order expressed by the ‘Law of Frequency of Error’. The law would have been personified by the
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Greeks and deified, if they had known of it. It reigns with serenity and in complete self-effacement
amidst the wildest confusion. The huger the mob, and the greater the apparent anarchy the more
perfect is its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements
are taken in hand and marshalled in the order of their magnitude, an unsuspected and most beautiful
form of regularity proves to have been latent all along. The tops of the marshalled row form a
flowing curve of invariable proportions; and each element, as it is sorted into place, finds, as it
were, & pre-ordained niche, accurately adapted to fit it. If the measurement at any two specified
Grades in the row are known, those that will be found at every other Grade, except towards the
extreme ends, can be predicted in the way already explained, and with much precision (p. 66).

This enthusiastic placing of the Normal distribution in the forefront of the study of
what he terms the Science of man was not made without considerable background investi-
gation. At the International Exhibition held in London in 1884, Galton had had an
Anthropometric Laboratory and he includes in Natural Inheritance a summary of some of
the data which he had collected, by taking measurements on visitors to the Exhibition.
Thus he measured nine physical characters in men and women, the frequencies for the
18 distributions varying between 212 and 1013. For each distribution he had found the
standardized deviates (measured from the median in terms of the probable error, not the
standard deviation) to the eleven percentage points shown below. He found the mean of
these standardized deviates for the 18 distributions and compared them with the Normal
curve values as follows:

Cumulative 9%,

from lower tail e 5 10 20 30 40 50 60 70 80 90 95
Mean of 18 Observed —2-44 —1-87 —1-24 —0-77 —-040 O0 038 075 1-21 1-92  2-47
deviates Normal —2-44 —1-90 —-1:25 —0-78 —038 0 038 078 1-25 1.90 2-44

Over 70 years ago these results must have appeared as remarkable pointers in a hitherto
unexplored field. It is hardly surprising that Weldon, when collecting the measurements
of physical characters in animal populations should start with the assumption that these
would be normally distributed within a homogeneous race.

3. THE DOUBLE HUMPED CURVE

In this early work there appeared to be one noticeable exception to the fit of Normal
curves to Weldon’s distribution, that of the relative frontal breadth of the Naples crabs.
He thought that this might arise from the mixture of two local races, providing perhaps
evidence of the beginning of some process of selection at work. With much arithmetical
labour, using trial and error, he graduated the distribution with the sum of two Normal
curves. On the 27 November 1892, he wrote to both Galton* and Pearson telling of his
achievement; to the latter he says:

Out of the mouths of babes and sucklings hath He perfected praise! In the last few evenings I
have wrestled with a double humped curve, and have overthrown it. Enclosed is the diagram. . .[He
adds numerical results]. If you scoff at this, I shall never forgive you.

It was this problem of dissection of a frequency distribution into two Normal components
which led to Pearson’s first statistical memoir, presented to the Royal Society in the
autumn of 1893 and published in the Philosophical Transactions in the following year. In
the most general case, the method involved the determination of the roots of a nonic whose

* At the end of his letter to Galton he remarked: ‘Therefore, either Naples is the meeting point of
two distinct races of crabs, or a ‘sport’ is in process of establishment. You have so often spoken of
this kind of curve as certain to occur, that I am glad to send you the first case which I have found.’
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parameters were derived from the first five moments of the observed composite distri-
bution. Note that the introduction of the method of moments into the fitting of frequency
curves is here described as giving a utilitarian answer to a practical problem ; the possibility
of other better solutions is admitted. Pearson recognized that some objective method of
measuring goodness of fit had yet to be found; a possible method suggested was the
comparison of the next, here the sixth, moments of the observed and fitted distributions.
In fact, of course, the standard error of a sixth moment was so large that little could be
achieved from this method of attack, but the derivation of the sampling errors of high
moments lay in the future.

The question ‘does a Normal curve fit this distribution and what does this mean if it
does not? was clearly prominent in their discussions. There were three obvious alterna-
tives:

(@) The discrepancy between theory and observation is no more than might be expected
to arise in random sampling.

(b) The data are heterogeneous, composed of two or more Normal distributions.

(c) The data are homogeneous, but there is real asymmetry in the distribution of the

variable measured.
The conclusion (¢) may have been hard to accept, such was the prestige surrounding the
Normal law. But if it was accepted, it was still possible to retain the concept of a finite
number of under-lying contributory causes, by deriving a continuous asymmetrical
frequency curve from an asymmetrical binomial, on the lines of Pearson’s Gresham College
shot-model referred to above.

Weldon explored the position in an empirical way, both by tossing dice and by calcu-
lating the terms of a number of binomial distributions, N(g +p)", with p + q. The following
extract from a letter to Pearson refers to this latter type of investigation:

T have had a shock! 23 April 1893

It seemed to me that the apparent symmetry of variation in animals showed that every ‘accident’
occurred about as often as any other, and that there was not, in any animal I had seen a ‘tendency’,
as biologists have it ‘to vary in one direction rather than in the opposite’.

But certain words of yours remained in my mind; and on Friday night I expanded (0-6 4 0-4)20
and (0-740-3)2 with most alarming results. I enclose a diagram of the appreciable terms in
(0-7+0-3)20. T should certainly not appreciate so slight a degree of asymmetry in an experimental
curve zig-zag-ing about the diagram. But I should say that the observations varied symmetrically
about the 7th term, (pg®). )

So that no result of a kind which I had fondly hoped for can be drawn from these curves! I hoped
that if an organ varied in a particular direction—that is if p became greater than g—the asymmetry
of the curve would give some sort of measure of the difference between the two; and so & sort of
kinetic of variation might be built up.

But if » may be more than twice as great as ¢ with the abominable result which I enclose, that
little hope goes to pieces.

It may seem curious to us today that so much weight was given to the idea of an
underlying model in which contributory causes or factors led to discrete distributions
which could be approximated by a continuous curve. As far as I know neither Weldon or
Pearson made any serious attempt to identify the parameters of the discrete distributions
with any biological phenomena. That all the component ‘accidents’ of Weldon’s model
would have a common p seems most unlikely.

As is well known Pearson (1895) obtained the fundamental differential equation of his
generalized frequency curves as the limit of the slope/ordinate ratio of a hypergeometric
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series, and this was the approach which he still followed in his lecture presentation of the
1920’s. In theoretical development, the 200-year-old tradition of deriving the Normal
curve as an approximation to the binomial had a lasting hold on the imagination, though
it is doubtful whether in practice, even in early days, he was much concerned about the
physical meaning of his hypergeometric parameters.

The immediate stimulus for the development of theory leading to a system of skew
frequency curves seems, however, to have come from Edgeworth, not from Galton or
Weldon. Writing to his friend W. H. Macaulay of Kings College, Cambridge on 18 August
1895, Pearson remarks:

There is a long tale as to the skew curves. Edgeworth came to me with some skew price curves
nearly 18 months or two years ago [letters from Edgeworth suggest it was in the autumn of 1893]
and asked me if I could discover any means of dealing with skewness. I had come to skewness also
in my Gresham lectures. I went to him in about a fortnight and said I think I have got a solution

out, here is the equation, and told him my chief (assumed) discoveries. I further said I don’t intend
to publish till I have illustrated every point from practical statistics. ...

In this connexion we find him writing to Galton on 19 November 1893:

If you will suggest any type of statistics which you think ought better than another to give
Macalister’s curve,*. . .my Demonstrator Mr Yule and I will endeavour to fit them as an example
of a type or class of asymmetrics.

The first Brunsviga calculator was not purchased until 1894, so that moment-calculation
and curve fitting required in illustrating theory from ‘practical statistics’ proved rather
laborious procedures involving a number of numerical slips which had later to be corrected.
In writing to Yule in November 1894, Pearson remarked: ‘I want to purchase a Brunsviga
calculating machine before anything else, and am making inquiries about it. I think it
would make moment-calculating fairly easy.” And later: ‘Henrici} speaks well of the
Brunsviga, but doubts whether it will not wear out with a few years’ use’. But Henrici,
of course, was wrong! To the end of his life, Pearson used as a spare machine at home a
Brunsviga which must have been of the beginning-of-the-century vintage, while Maurice
Kendall has told me that he has and still uses the Brunsviga which Yule purchased for
work on his first (1910) edition of An Introduction to the Theory of Statistics.

4. WANTED: A TEST FOR GOODNESS-OF-FIT

It seems appropriate to quote at the head of this section some remarks which Pearson
wrote long afterwards about Galton in the third volume of his Life (1930, 3A, p. 6).

Again, if the reader anticipates that Galton was a faultless genius, who solved his problems
straight away without slip or doubtful procedure, he is bound to be disappointed. Some creative
minds may have done that, or appear to have done it, because, the building erected, they left no
signs of the scaffolding; but the majority of able men stumble and grope in the twilight like
their lesser brethren, only they have the persistency and insight which carries them on to the
dawn.

Weldon’s extensive dice tossing had another object in view. No valid criterion existed
at this date by which to judge whether the differences between a series of group frequencies

* This was the log-normal curve which did not of course belong to his system, although agreeing
very closely in shape with & corresponding four-moment Type VI curve.

t O. Henrici had been Pearson’s predecessor in the Applied Mathematics chair at University College;
he had moved from there to the City and Guilds of London Institute.
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and a theoretical law, taken as a whole, were or were not more than might be attributed
to the chance fluctuations of random sampling. Weldon, with his flair for empiricism,
therefore decided to explore the kind of random fluctuations which one might expect
to get in sampling, by comparing his tossing results with theoretical binomial expecta-
tions.

It was at this juncture that an incident occurred leading to the series of letters
quoted below; unfortunately scarcely any of the letters written o Weldon have been
preserved.

1. Weldon to Galton, from 30a Wimpole Street, W., 4. ii. 94.

Dear Mr Galton,

Will you be kind enough to give me your opinion on the following point ?

I have collected 26,306 tosses of groups of 12 dice, for use at the Royal Institution. In each group
the event recorded is the number of dice with 5 or 6 points, so that the chance of success with each
die is 1/3. I enclose the result, which seems to me good.

A certain set of 7000 tosses, forming part of this result, was made for me by a clerk in the office
of University College, whose accuracy in work of another kind I have had occasion to test by asking
him to copy 24,000 numbers of 3 figures each, with excellent results.

A day or two ago, Pearson wanted some records of the kind in & hurry, in order to illustrate a
lecture,* and I gave him the record of the clerk’s 7000 tosses, together with some others.

I gave him the 7000 separately from the rest, and on examination he rejects them, because he
thinks the deviation from the theoretically most probable result is so great as to make the record
intrinsically incredible.

You will see how serious a matter this is. On the one hand I feel that I have no right to reject an
experimental result for this kind of reason; and on the other, the result itself does not seem to me
incredible.

I am anxious, however, not to rely upon my own judgement in so difficult a matter—I have
therefore resolved to consult as many people as possible. Last night I saw Greenhill, whose experience
in target practiceat Woolwich makes him know this kind of thing statistically as well as mathematic-
ally—he is of opinion that the record is perfectly credible, and that I have no shadow of reason to
disregard it.

Today I am sending it to you and to Edgeworth.t

Forgive me for troubling you, when I know how busy you are; but my need is very great.

Yours very truly,
W. F. R. WELDON

The ‘most probable’ result in each of the enclosed tables is obtained from the expansion of

(F+3)e

and not from any form of approximation.

We can get a clue as to why Pearson considered ‘the record as intrinsically incredible’
from Yule’s notes, taken down at Pearson’s lectures in the autumn of 1894. In column 2
of the table below are presumably the result of the clerk’s dice throwing, 7006 (not 7000)
tosses of 12 dice. Column 3 shows the binomial expected frequencies as given by Yule,
from the expansion of (% +1)!2. Note that these figures add to 7010-2 not 7006; Yule does
not however quote totals. He remarks:

The fit is good except at the ordinates four and five; 4 is 98 too low, 5 is 69 too high. This is odd:
can the experimenter have inadvertently booked his results in the wrong column? Let us find out
first what the chance against the above combined occurrence is.

* This lecture is almost certainly one of the four lectures on ‘The Geometry of Chance’ given that
winter by Pearson at Gresham College.
+ For the correspondence with Edgeworth which resulted, see pp. 13-15 below.
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No. of Observed Expected (0-E)?
5’s or 6’s frequency frequency O-E E
0 45 54-0 -90 1-50
1 327 323-7 33 0-03
2 886 890-2 —4-2 0-02
3 1475 1483-7 — 87 0-05
4 1571 1669-2 —98-2 578
5 1404 1335-3 68-7 3:53
6 787 788-9 -19 0-00
7 367 333-8 33-2 3-30
8 112 104-3 7-7 0-57
9 29 23-2 5-8 1-45
10 2 3:5)
11 1 } 0-4 —-09 0-21
12 0 O-OJ\
Totals 7006 7010-2 —4-2 16-44 = x?

The argument used in the Notes, which was presumably the lecturer’s, was based on the
following analysis in which I have made the totals 7000 to fit in with Yule’s arithmetic.

Group Observed Expected
x =4 1571 1669
x =25 1404 1335
Remainder 4025} 5429 3996} 5331
Total 7000 7000

Directing attention to the most exceptional group, that containing four ‘5’s or 6’s’, Yule
gives the standard error of the observed frequency as

1669 5331
00.——.——) = 3565
(70 7000 7000)
which gives (1571 —1669)/35-65 = — 2-75 as the ratio of the deviation from expectation to
its standard error. Using the normal approximation to the sum of binomial terms, the
probability of an absolute deviation (positive or negative) from expectation as large or
larger than that observed is 0-0060 or 1i7.*
The argument of the Notes now runs as follows:
But now what is the chance of this being combined with the deviation of 69 in the next ordinate ?
‘We must be careful how we proceed here. We cannot simply work out, as above, the chance of the
deviation 69 and multiply by the chance above, for the two are not independent. If the 98 has

already been lost (or gained) it must be made up somehow by the other ordinates. We must remove
the 1571 whose position has already been allotted and deal only with the rest.

He now finds a standard error for the ‘five’ group of

1335 3996

(5429’5331'5331

) = 3192,
an expectation in the group of 5429 x 1335/5331 = 1359 and a ratio of deviate to standard
error of (1404 —1359)/31-92 = 1-39. The probability of an absolute deviation exceeding

* Quoting what he says is a table given in Pearson’s ‘Gresham College Lecture Notes’, Yule gives
the probability as 115.
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1-39 is, from the normal approximation, 0-165. It is now argued that the probability of a
pair of deviations, having opposite signs, as large or larger than those observed is

£ % 0-0060 x 0:165 = 0-00049

or approximately s¢s5.* Yule adds that ‘if we went through the whole lot of all other
deviations, the total chance for them might be somewhat smaller’. ‘Consequently it appears
not unreasonable’ his Notes add, ‘to conclude that the experimenter has made some slip
or other in entering results in the wrong column’.

To these quotations from Yule’s Notes must be added some correspondence with F. Y.
Edgeworth which occurred in February 1894 when the argument was still at its height.

2. Edgeworth to Weldon, from All Souls College, Oxford, 7. ii. 94.
Dear Weldon,

The tests which I have applied to the cases with four and five dice do not yield a result which
excites much suspicion. I shall be curious to know your final decision.

Yours very truly,
F.Y. EDGEWORTH

From some loose notes with the letters it appears that Edgeworth’s calculations had
been rather perfunctory. He had: (a) correctly found the separate moduli (standard error
x 4/2) for the ‘four’ group and the ‘five’ group as 50-4 and 46-4 (s.E.’s of 35-6 and 32-8);
(b) divided these into the observed deviations from expectation of 98-2 and 68:7; (c) com-
mented that in the first case: ‘the ratio C is not quite 2, corresponding to odds against of
rather more than 200 to 1, which can’t be thought prohibitive I think’; (d) in the second
case, remarked that the ratio C = 1-4 corresponded to a very ‘moderate improbability’
and added: ‘I write without a Table by me. But I know that the odds are nothing out of
the way, say 50 or 100 to 1°.

We do not know what Pearson had first written to Edgeworth but he may well have
proposed a procedure on the lines set out in Yule’s Notes. There are, however, three
further letters which have survived and are of interest in showing how at the beginnings
men ‘stumble in the twilight’.

3. Edgeworth to Pearson, from All Souls College, Oxford, 9. ii. 94.
My dear Pearson,

Your method would be all right as long as you are given only ¢wo results of the kind operated on.
But it is not open to you I think to apply twelve (independent) tests to a composite event such as
that considered; to select fwo which accuse, as the French say, a cause other than accident; and
multiply the (im)probability of each to find the (im)probability of the system. To take & simple case,
suppose each result presented one of two alternatives, either (a) ordinary, (b) improbable in the
degree 1:100. Suppose that having fifty returns such as those before us (or any similar data) you
look through them and find two events the probability of each of which is only 1/100, I don’t think
it is open to you to say that the probability of the system is 1/10,000. You should consider the
growing likelihood, as you increase the number of your trials, that such extraordinary results will
be presented. You surely would not make the same assertion if there had been fifty thousand data.

So it seems to me at present; but I know how kaleidoscopic these problems are.

In haste

Yours very truly,
F.Y. EDGEWORTH

* Through what was possibly a numerical slip afterwards corrected in red ink, the original calcu-
lations in the notes gave 1/14,416. Whether it was this probability, rather than the 1/2000, which
induced Pearson to tell Weldon that the record was ‘intrinsically incredible’, one cannot now say !
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4. Pearson to Edgeworth, from 7 Well Road, Hampstead, N.W., 10. ii. 94
My dear Edgeworth,

Probabilities are very slippery things and I may very well be wrong, but I do not clearly follow
Alyour reasoning or illustrations. You say take 50 returns of 1:100 degree of probability. If two
occurred should I calculate the chance of the system as 1/10,000? Certainly not. Following the
Blmethod I applied to the dice, I should ask what is the chance of one 1:100 event occurring in 50
throws. This is }, and after its having occurred what is the chance of another like event in the
remaining 49 occurrences. It is 49/100. The combined chance is 49/100 x } = 0-245, strikingly close
to the 0-25 = }, which I assume you to mean to be the probability of the event you suggest.
Now look at the dice problem in the same way. Disregard all but 5 and 6 occurring 4 times in
the 12 dice. I calculated the chances that in 7000 throws there should be a defect of 98 or more.

Chance = 1/270. Now make another experiment with the same 12 dice, take 7000 throws and

inquire how often there will be 5 and 6 occurring 5 times & certain number of times in excess. Suppose

this came out 1/40. Surely the combined chance against the two experiments would be 1/270 x 1/40?2

They are quite independent.

Now what I contended was this, that admitting a defect of 98, this defect ought to be distributed
theoretically along the whole line of groups and that having done this, the distribution of the
remaining number of throws among the 5, 6, 7, 0, 1, 2, etc., was a practically new and independent
experiment.

Your method of looking at the matter leads me into difficulties in the following way. Suppose
we are quite certain that a population follows a normal frequency curve. We have, we will say,
discovered this by measurements on several 100,000’s. Now we take a sample 10,000, and draw its
frequency curve, with a result when compared with the normal curve like this:

[Here Pearson sketched roughly a normal curve and a frequency polygon with a single ‘hump’
rising well above the curve at X.]

Here the hump at X is counterbalanced by proportionate diminution of all the other ordinates.
The chance of this hump we will take to be 1/270. Now suppose instead of this, which fits the curve
very well except at 4, we had a result like that over page, with a marked deficit at Y. )

[Here is another diagram in which the frequency polygon has a marked dip at Y as well as the

hump at X, the defect at Y being rather less than excess at X.*]

Dl Are you prepared to say that both these systems are equally probable and both improbabilities
are to be measured, hump X being more improbable than dip ¥ by the improbability of X? It
seems to me that the appearance of another anomaly like ¥ which almost counterbalances X must
much increase the improbability of this second system as compared with the first. You say, No!

E|Chance of X = 1/270, chanceof Y = 1/40, and chance of whole system is the greater of these = 1/270,

Fland is not touched by whether Y exists or not. This does not seem to me at all satisfactory. I quite

agree X and Y are not independent. Well, make them so by cutting X off and distributing it in

proper proportions round the curve. Y will take some of it, but not all. Having done this the reduced

Y is an independent event, is an independent discrepancy in the normal frequency curve.

You say but there are other defects besides Y. Certainly, but when we have filled up Y again
they are of such minor importance that they are hardly worth considering—they fall, continuing
the process, 8o low down in the scale of fractions of the corresponding s.p.s. Here seems to me our
Gldifference. You appear to calculate the improbability of a given distribution by its chief irregularity.

I assert that weight must be given to other irregularities. Now if dice gave a symmetrical curve we

should compare the theoretical and experimental Standard deviations and thus get a test of the

Hisystem as a whole. Surely the experimental S. deviation pays attention to ¥ as well as to X. It
diverges more from the theoretical, because X is not proportionately distributed but is collected
largely at Y. Now a similar result, it seems to me, must hold for these skew systems. Accordingly
I contend that your 1/270—mind you in itself & somewhat improbable result—does not represent

Ijthe badness of the experiment, that irregularity in other columns is also to be taken into account.

J|I admit that the proper way of doing this is quite open to question, but I think whatever way it is
done the great dip at ¥ will immensely increase the odds. Please note that a second 7000 experiments
by the same clerk, calculated from the two worst columns only give a chance of 1/250 instead of
1/3240 showing a marked improvement. While 19,000 experiments give a chance of 1/160 (1st 7000

Klexcluded) by same method.

C

Yours very sincerely,
KARL PEARSON

* I have changed Pearson’s original letters, 4 and B, to X and Y in order to avoid confusion with
the letters A~K which Edgeworth added to Pearson’s letter for reference purposes when he returned it
with his own answer.
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5. HBdgeworth to Pearson, from 5 Mt. Vernon, Hampstead, 12. ii. 1894.
Dear Pearson,

Excuse my returning your letter for convenience of reference.*

A. I mean fifty data such as your numbers of fours, fives, etc.; or rather the fifty independent
observations such as those which you derive these from.

For C, (p. 4 and after), I quite agree as to the ‘independence’ of which you speak.

B. The chance of an event ‘of 1:100 degree of probability’ (p. 1) occurring (at least) once in fifty
(independent) trials is 1 —(99/100)%. The chance of its occurring as much as twice is

99 \% 99\%® 1
1 {(100) +50x (100) x 100}'

D. Certainly not. I am not prepared to take no account of B (Y in your figure). I only say it is
very difficult to take account of it where the case is not so simple as my 1/100.

The significance of X and Y is modified according to the number of ‘trials’ or independent events
there may be (I have tried to indicate these by so many intervals).

F. I here meant that—exactly. ‘Not much suspicion’ are I think my words to Weldon.

G. I never emphasized the chief.

H. Surely. But what I complain [of] is that you don’t take the system as a whole but content
yourself with a method proper to a single datum or pair. Having n observations you look out for
one or two improbable results; and of course you will find them if » is large. There is our difference.
You seem to think the size of n makes no difference. I say then as before let n be 50,000. It is chock
sure that you will have two of the events (considered as independent) occurring, although the
probability of each is 1/100. See your A. The improbability is not 1/10,000 but

99 50,000 99 49,999 1
(=2 0,000( —— 1.
! {(100) +50,00 (100) ><100}

There is the issue; I subscribe to J.
K. Well then it is no wonder that we should have some deviations just to keep up the average.
If you are at University College tomorrow afternoon I may see you. I shall be there about 6.15.

Yours very truly,
F. Y. EDGEWORTH
I write in great haste and may well have made slips.

There are two further letters from Edgeworth to Pearson written later that February
which show that the methods of dealing with multiple discrepancies were still being
discussed. But the topic has shifted from the immediate problem of Weldon’s 7000 dice
throws, and I have not space to quote them here.

The interested reader must choose his own method of tackling this problem. Edgeworth
was clearly criticizing Pearson for having picked out the largest and second largest of a set
of differences from expectation without making proper allowance for the fact that they
were the largest in a group of 13. But even if this were recognized, no theory existed for
dealing with the largest of a set of mutually but unequally correlated differences.

Pearson’s (1900) y2-test for goodness-of-fit, derived some five years later after the theory
of multiple correlation had been developed, leads to the calculations shown in columns
4 and 5 of my table. The probability of obtaining a x> based on 10 degrees of freedom,
exceeding 16-44, if the discrepancies in the table taken as a whole were due to chance, is
0-088. Certainly this does not seem exceptional, but of course the x2-test does not take
account of certain kinds of coincidence. Perhaps the position of the two large discrepancies
next to each other in the table might justify some suspicion.

Had there been prior grounds for thinking that Mr Hull, the clerk, might have mixed up

* The letters A-K refer to the corresponding passages which Edgeworth had marked on Pearsons’
letter of 10 February.
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entries in these two particular columns, of ‘fours’ and ‘fives’, a sensitive test would con-
sist in applying x? to the following table.*

Observed Expected Difference
z =4 1571 1669 —98
z=25 1404 1335 + 69
Remainder 4031 4002 +29
Total 7006 7006

Here, x? = 9-53 and P (x% > 9-53|v = 2) = 0-009, so that the result appears more
exceptional, though hardly so even here on the basis of critical odds used by Edgeworth.
However, we have been given no prior reasons for supposing that Mr Hull would confuse
these two columns, and the selection of this most unfavourable three-category table would
seem to be without justification. Theory, in fact, would be hard put to it to disprove
Weldon, Greenhill and George Darwin’s instinctive reaction to the figures; but the dis-
cussion must have emphasized the need for more thought and more mathematical research.

Yule’s lecture notes mention an empirical measure of goodness-of-fit which was in use
at the time. This was the ratio of (a¢) the area between the theoretical curve and the
observed frequency polygon (not the histogram), taken everywhere as positive,} to (b) the
total area under the curve. This may be set down roughly as

R = S|0-T|/=T

where O is the observed and 7' the theoretical frequency in a group. Yule quotes numerical
values of this ratio, expressed as a percentage, for the cases of normal curves fitted to
eleven different frequency distributions. The coefficients range between 5-85 and 13-59,,
with a mean value of 8-09,. He remarks that when skew or compound curves were fitted
to the same data, much better fits resulted, figures of ‘49, or so’ being obtained.

During 1894 Weldon was much occupied with proposals for work which he planned to
submit to a small, newly formed Royal Society ‘Committee for conducting statistical
inquiries into the measureable characteristics of plants and animals’, of which he was
secretary and Galton chairman. But among his letters to Galton discussing experiments
to be sanctioned by the committee, there are many references to Pearson’s asymmetrical
frequency curves. It seems that neither Galton nor Weldon felt at home in the
mathematics of Pearson’s second Royal Society memoir (published in 1895); they were
perhaps looking for a physical explanation of the fundamental differential equation,
which they could not discover. Pearson also, with the enthusiasm of the creator of so
elastic a system, was perhaps excusably trying out his curves on any set of non-normal
data which came his way, without considering very deeply the biological meaning of the
asymmetry. Thus, as Weldon pointed out, a skew distribution of measurements on the
breadth of foreheads of Crabs or the stature of St Louis schoolgirls, might only reflect the
fact that growth was going on within the age limits covered by the data.

The final letter which I shall quote, of a year later, bears on this theme and again well
illustrates the slow process of bringing together the approaches of the biologist and the
mathematician.

* T have amended Yule’s reduced table given on p. 12 above so that the totals now agree with the

original data quoted.
1 The use of the Drawing Office planimeters made this an easy quantity to measure.
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6. Weldon to Galton, from 30a Wimpole Street, W., 6. iii. 1895.
Dear Mr Galton,

Let me congratulate you heartily upon your recovery ; I shall look forward with great pleasure to
seeing you next week.

Pearson does admit that he omits to consider the moving mean in his theory of skew curves—or
he did so nearly a fortnight ago, when I charged him with it—we had a delightful afternoon, abusing
each other in a friendly way about this point for some hours; he promised more consideration of it;
but since then he has been in bed with influenza—I hope he will be well enough to take a short
holiday in a day or two, but he cannot work for some time.

Ten of our men at University College, and in many classes half the students, are in bed: so that I,
who never get anything worse than a bad cold, feel like the Wandering Jew in time of plague.

About the mathematicians. I feel the force of what you say, naturally. But I am horribly afraid
of pure mathematicians with no experimental training.

Consider Pearson. He speaks of the curve of frontal breadths, tabulated in the report, as being a
disgraceful approximation to & normal curve. I point out to him that I know of a few great causes
(breakage and regeneration) which will account for these few abnormal observations: I suggest that
these observations, because of the existence of exceptional causes, are not of the same value as the
great mass of the others, and may therefore justly be disregarded. He takes the view that the curve
of frequency representing the observations, must be treated as a purely geometrical figure, all the
properties of which are of equal importance; so that if the two ‘tails’ of the curve, involving only a
dozen observations, give a peculiarity to its properties, this peculiarity is of as much importance as
any other property of the figure.

For this reason he has fitted a ‘skew’ curve to my ‘frontal breadths’. This skew curve fits the
dozen observations at the two ends better than a normal curve; it fits the rest of the curve, including
more than 90 9%, of the observations, worse. This sort of thing is always being done by Pearson, and
by any ‘pure’ mathematician.

Greenhill, to whom I took my troubles, laughs at the whole thing. You know that his chief
business is to teach the properties of probability surfaces to artillery officers in connection with
target practice; and he has a good deal of experience of curves made with your quincuncial screen
of pins.

Greenhill is quite ready to admit the necessity of ignoring the few aberrant observations. George
Darwin says that Pearson pays too much attention to the higher moments (which of course depend
chiefly on the character of extreme observations.)

Now these are the two men working at the applications of Probability who know, not only
mathematics, but the degree of approximation to be expected from an experiment. This sort of
instinct as to what may be expected of an experiment and what may not is a quality-very rare
among young mathematicians, so far as I know them.

But enough of them—1I shall look forward to your proposals next week.

Yours very truly,
W. F. R. WELDON

The Herring, which makes a skew curve are very heterogeneous. The mean value of the length
from snout to anus, on 717 males, was very widely different from that given by 990 males—the
extra 270 being obtained by opening another of the cases of herrings. I have not the figures at hand,
because I sent them to Pearson, as basis for his curve; but he says that ‘the material is homogeneous,
with skew variation about one mean’. I don’t believe it!

5. CONCLUDING REMARKS

These letters are in several ways revealing; it would have been easy for the ‘young
mathematician’ and the younger zoologist (Weldon was three years Pearson’s junior) to
drift apart, but the compelling urgency of the field for exploration which lay ahead, a field
in which they were in so many ways fitted to co-operate, held them together. No doubt
Galton played an important part in bridging the gap between them, so that six years later
with friendship firmly established they were planning the first issue of Biomeirika.

In the context of the 1894 discussions, they were still ‘stumbling in the twilight’. There

2 Biom. 52
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were many defects in Weldon’s crustacean data: breakage and regeneration in individuals
(as he himself pointed out); lack of homogeneity; the unknown effect of age on relative
growth of parts and other disturbing factors. These particular series of observations were
indeed unlikely to lead to any clear evidence, based on the fit of frequency curves, bearing
on the process of natural selection. But the arguments which arose undoubtedly helped
to bring out the need for more thorough investigation, both experimental and theoretical.

Pearson, too, showed an unsureness in the handling of the theory of probability. I
suppose that he was never really interested in this calculus for its own sake, as a pure
mathematician might have been; he needed its help as a tool in the solution of problems
which did hold his interest. It was perhaps typical of the early British approach to mathe-
matical statistics that he could write ‘probabilities are very slippery things’ in answer to
Edgeworth’s ‘T know how kaleidoscopic these problems are’!

But reflexions of this kind cannot conceal the fact that out of these arguments developed
the ever expanding structure of the theory of mathematical statistics which we know
today. That seems ample justification for putting these incidents on record.
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