
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ XИМИЯ. 2025—2026 уч. г. ШКОЛЬНЫЙ ЭТАП. 9 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 100.

Задача 1

1. На картине Л.З. Танклевского «Портрет химика Алексея Ивановича Шаврыгина» показано, как учёный измеряет показатель преломления перегоняемой жидкости на рефрактометре. Соотнесите названия лабораторной посуды с номерами, которыми она обозначена на рисунке.

Ответ:

Колба с отростком (колба Вюрца) – 2

Прямой холодильник (холодильник Либиха) – 4

Аппарат Киппа – 1

Колба-приёмник – 5

Эксикатор (прибор для высушивания и хранения гигроскопичных веществ) – 3

За каждый правильный ответ – 2 балла.

Всего 10 баллов.

Задача 2 (№ 2-5)

Имеются 4 навески порошков металлов, все навески имеют одинаковую массу. Металлы — железо, цинк, алюминий, магний. Металлы сожгли в избытке кислорода и взвесили продукты сгорания. Запишите формулы продуктов сгорания и расположите их в порядке возрастания массы.

2. Продукт **1** (наименьшая масса) –

Ответ: ZnO.

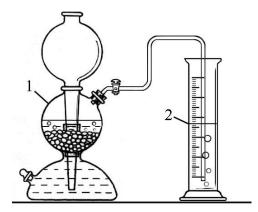
3. Продукт **2** –

Ответ: Fe2O3.

4. Продукт **3** –

Ответ: МдО.

5. Продукт 4 (наибольшая масса) –


Ответ: Al2O3.

Каждая формула на правильном месте – 2 балла.

Итого за задания № 2-5 - 8 баллов.

Задача 3 (№ 6-7)

В аппарат Киппа (на рис. показан цифрой 1) поместили кусочки мрамора и залили соляную кислоту. Выделился газ \mathbf{X} , который пропустили в цилиндр с дистиллированной водой (на рисунке показан цифрой 2).

После пропускания газообразного вещества \mathbf{X} масса цилиндра с водой увеличилась на 1,1 г. В цилиндр с раствором \mathbf{X} добавили избыток известковой воды, наблюдали выпадение осадка белого цвета.

6. Какой газ X получали в аппарате Киппа? Приведите его химическую формулу.

Ответ: СО2

За правильный ответ 2 балла.

7. Какова масса осадка, выпавшего после добавления избытка известковой воды к раствору газа **X**? Ответ выразите в граммах и округлите до десятых.

Ответ: 2.5.

За правильный ответ 4 балла.

Итого за задания № 6-7 - 6 баллов.

Задача 4 (№ 8)

Выберите вещества, действуя на которые соляной кислотой можно количественно получить хлорид цинка.

- ZnO
- ZnSO₄
- \bullet Na₂ZnO₂
- $Zn_2(OH)_2CO_3$
- \bullet ZnBr₂
- $Zn(NO_3)_2$

За каждый верный ответ по 2 балла (за каждый неверный вычитается 2 балла).

Всего 6 баллов.

Решение: сульфат, бромид и нитрат цинка не реагируют с соляной кислотой.

Задача 5 (№ 9)

Даны смеси газов (в неизвестных соотношениях). Как изменится средняя молярная масса каждой смеси при протекании реакции между газами? Установите правильное соответствие.

1) CO и O₂

А) Уменьшится

2) H₂ и Cl₂

Б) Увеличится

3) CO и N₂O

В) Не изменится

4) N₂ и H₂

Ответ: 1 - B, 2 - B, 3 - B, 4 - B.

За каждый правильный ответ – 2 балла.

Всего 8 баллов.

Задача 6 (№ 10-11)

Навеска металла массой 2,00 г полностью растворяется в избытке соляной кислоты с выделением газа, объём которого составляет 377 мл (в пересчёте на н.у.).

10. Определите металл, в ответе укажите его символ. Предложите два разных решения.

Ответ:

Металл 1 (с меньшей атомной массой) – Sn

Металл 2 (с большей атомной массой) – U

За каждый правильный ответ – 3 балла. Всего 6 баллов.

11. Рассчитайте массу продукта реакции соляной кислоты с более тяжёлым металлом. Ответ приведите в граммах, с точностью до десятых.

Ответ: 3,2 г (от 3,1 до 3,2)

За правильный ответ 2 балла.

Итого за задания № 10-11 - 8 баллов.

Задача 7 (№ 12-13)

Вещество ионного строения состоит из двух элементов. Положительный и отрицательный ионы имеют одинаковую электронную конфигурацию. При взаимодействии вещества с водой выделяется газ, в молекуле которого столько же электронов, сколько в каждом из ионов по отдельности.

12. Определите неизвестные вещества и ионы, приведите их формулы. В формуле иона заряд указывайте после символа элемента.

Ответ:

Формула вещества ионного строения – LiH или HLi

Формула газа – Н2

Формула положительно заряженного иона – Li+

Формула отрицательно заряженного иона – Н-

За каждый правильный ответ – 2 балла.

Примечание. Засчитываются также решения с веществами: AlN, Mg_3N_2 , CaS, Al_4C_3 , Na_3N

Всего 8 баллов.

13. Сколько электронов содержится в молекуле газа?

Ответ: Число электронов -2.

Для других вариантов решения засчитываются также ответы:10 или 18.

За правильный ответ – 2 балла.

Итого за задания № 12-13 - 10 баллов.

Задача 8 (№ 14)

Химические связи бывают разные — короткие и длинные. Даны некоторые ковалентные связи и их длины (в относительных единицах). Каждой связи поставьте в соответствие правильную длину.

1) H–O	A) 74
2) H–Cl	Б) 96
3) O-O	B) 127
4) H–H	Γ) 146
5) Cl–Cl	Д) 199

Ответ: 1 - B, 2 - B, $3 - \Gamma$, 4 - A, $5 - \Pi$.

За каждый правильный ответ – 2 балла.

Всего 10 баллов.

Задача 9 (№ 15-16)

Белый фосфор состоит из молекул P_4 . В отличие от других видов фосфора, он растворим в сероуглероде CS_2 . При полном сжигании образца такого раствора получили 7,10 г белого порошка и 43,68 л (н.у.) смеси газов. Определите массу раствора (в г) и массовую долю белого фосфора (в %) в этом растворе. Ответы приведите с точностью до десятых.

15. Масса раствора –

Ответ: 52,5 г; [52;53]

За правильный ответ 6 баллов.

16. Массовая доля P₄ –

Ответ: 5,9%; [5,8;6]

За правильный ответ 2 балла.

Итого за задания № 15–16 – 8 баллов.

Решение: протекают следующие реакции:

$$\begin{array}{c} P_4 + 5O_2 \rightarrow 2P_2O_5 \\ CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2 \end{array}$$

Белый порошок – это оксид фосфора,

$$n(P_2O_5)=7,10$$
 / $142=0,05$ моль, $n(P_4)=n(P_2O_5)$ / $2=0,025$ моль. $m(P_4)=0,025$ * $124=3,1$ г.

n(газов) = 43,68 / 22,4 = 1,95 моль, по уравнению реакции из 1 моль CS_2 образуется 3 моль газов, значит $n(CS_2) = 1,95 / 3 = 0,65$ моль и $m(CS_2) = 0,65$ 76 = 49,4 г.

$$m(p-pa) = 49.4 + 3.1 = 52.5 \Gamma$$

 $\omega(P_4) = 3.1/52.5*100\% = 5.9\%$

Задача 10 (№ 17-18)

Коричневый порошок \mathbf{X} , используемый в качестве катализатора при получении кислорода в лаборатории, при прокаливании разлагается так, что масса твердого остатка \mathbf{Y} оказывается на 18,4% меньше массы \mathbf{X} . Вещество \mathbf{Y} при выдерживании в кислороде переходит в вещество \mathbf{Z} , содержащее 28,0% кислорода по массе.

17. Установите вещества X, Y, Z, приведите их формулы.

Ответ:

X - MnO2

Y - MnO

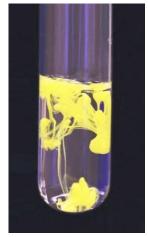
Z - Mn3O4

За каждый правильный ответ – 2 балла.

Всего 6 баллов.

18. Укажите все правильные степени окисления атомов металла в Z.

- +1
- \bullet +2
- +3
- +4
- +5
- +6


За каждый верный ответ — 1 балл, за каждый неверный ответ вычитается 1 балл. Всего 2 балла.

Итого за задания № 17–18 – 8 баллов.

Решение: предположим, что **X** это оксид марганца (IV) $M(MnO_2) = 87$ г/моль.

87*0,184=16 г/моль это изменение массы при прокаливании. Получается Y — оксид марганца (II) MnO. Найдём формулу Z n(Mn) : n(O) = 72,05 / 55 : 27,95 / 16=1,31:1,747=1:1,333=3:4 Mn $_3$ O $_4$ — оксид марганца (II, III)

Задача 11 (№ 19–20)

Вещество **XY** – бинарное соединение светло-желтого цвета. Его можно получить реакцией обмена между растворами двух электролитов (см. фото).

Этой реакции соответствует краткое ионное уравнение:

$$X^+ + Y^- = XY \rfloor$$

Соотношение масс ионов X^+ и Y^- в данной реакции составляет

$$\frac{m(X^+)}{m(Y^-)} = \frac{1}{1,176}$$

Элементы \mathbf{X} и \mathbf{Y} находятся в одном периоде Периодической системы химических элементов Д.И. Менделеева.

19. Определите элементы **X** и **Y**. В ответ введите их символы.

Ответ: X – Ag **Y** – I

За каждый правильный ответ – 2 балла. Всего 4 балла.

20. Вещество **XY** не растворяется ни в воде, ни в органических растворителях. При нагревании плавится с разложением. Под действием света разлагается. Кристаллическая структура **XY** похожа на гексагональную структуру кристаллов льда, поэтому введение небольшого количества аэрозоля в виде микроскопических кристалликов **XY** в дождевое облако вызывает в нём конденсацию водяного пара.

Проанализируйте описанные выше свойства соединения **XY**, укажите области его применения.

- Создание светочувствительного слоя дагерротипа, прообраза аналоговой фотографии
- Добавление к автомобильному топливу для увеличения октанового числа бензинов
- Распыление в облаках для конденсации воды, что вызывает выпадение осадков
- Изготовление полупроводниковых приборов, в том числе солнечных батарей
- Варка стекла для изготовления линз и призм в оптических системах специального назначения

За каждый верный ответ – 2 балла, за каждый неверный вычитается 2 балла.

Всего 4 балла.

Итого за задания № 19-20 – 8 баллов.

Дана схема окислительно-восстановительной реакции.

$$\mathbf{X} + Cl_2 + H_2O \longrightarrow H_3PO_4 + Br_2 + \mathbf{Y}$$

21. Определите вещества Х и У, приведите их формулы.

Ответ: X – PBr3 или PBr5

Y - HC1

За каждый правильный ответ – 4 балла. Всего 8 баллов.

22. Найдите коэффициент перед формулой H₂O в уравнении реакции, если минимальный коэффициент в уравнении равен 2.

Ответ: 8.

За правильный ответ 2 балла.

Итого за задания № 21-22 - 10 баллов.

Решение: В веществе **Y** должен быть хлор, являющийся окислителем в реакции, и восстанавливающийся до HCl, принимая 2 электрона. Из условия следует, что восстановитель в ходе реакции отдаёт 5 электронов и в его составе фосфор и бром. Бром должен быть в виде бромида и отдаёт 1 электрон, превращаясь в Br^0 . Значит фосфор должен быть в степени +3, тогда PBr_3 всего отдаст 5 электронов.

$$2PBr_3 + 5Cl_2 + 8H_2O \longrightarrow 2H_3PO_4 + 3Br_2 + 10HCl$$

Другой вариант решения: PBr₅.

Уравнение реакции: $2PBr_5 + 5Cl_2 + 8H_2O \longrightarrow 2H_3PO_4 + 5Br_2 + 10HCl$

Список источников

1. https://edutorij-admin-api.carnet.hr/storage/extracted/848559/index.html