ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ. 2024 г. ПРИГЛАСИТЕЛЬНЫЙ ЭТАП. 10 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальное количество баллов — 8.

Задание № 1

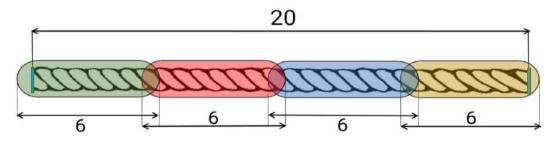
У Васи есть прямой бикфордов шнур длиной 20 метров, который горит равномерно со скоростью 1 метр в минуту. Вася хочет поджечь его одновременно в нескольких точках так, чтобы весь шнур сгорел быстрее чем за 3 минуты. В каком наименьшем количестве точек надо поджечь шнур Васе? От места поджигания шнур начинает гореть в обе стороны.

Ответ: 4.

Точное совпадение ответа — 1 балл

Решение.

За 3 минуты сгорает не более 6 метров шнура от мест поджога. Поэтому задача переформулируется так: есть отрезок длины 20; каким наименьшим количеством интервалов длины 6 можно его покрыть? Интервалы длины 6 могут налегать друг на друга и могут вылезать за пределы отрезка длины 20. Очевидно, что 3-х интервалов не хватит, так как их суммарная длина будет 18, что меньше 20. А четырьмя интервалами длины 6 отрезок длины 20 покрыть можно, см. рисунок.



Задание № 2

Действительные числа х, у, z таковы, что

$$(x + y)(x + y + z) = 785,$$

 $(y + z)(y + z + x) = 692,$
 $(z + x)(z + x + y) = 973.$

Найдите все возможные значения x + y + z.

Ответ: 35 и -35.

Точное совпадение ответа — 1 балл

Решение.

Сложив все три уравнения и преобразовав, получим

$$2(x+y+z)^2 = 2450,$$

откуда x + y + z = 35 или x + y + z = -35.

Осталось проверить, что оба эти случая на самом деле возможны.

1)
$$x + y + z = 35$$
.

Поставив это в исходные уравнения, находим

$$x + y = \frac{785}{35}$$
, $y + z = \frac{692}{35}$, $z + x = \frac{973}{35}$.

Отсюда

$$z = 35 - \frac{785}{35}$$
, $x = 35 - \frac{692}{35}$, $y = 35 - \frac{973}{35}$.

Сумма этих трёх чисел как раз равна 35.

2) x + y + z = -35. Достаточно сменить знак у значений x, y и z, найденных в предыдущем случае. При такой смене знаков все три равенства из условия сохранятся, так как каждая скобка (x + y), (y + z), (z + z) и (x + y + z) сменит знак, поэтому произведения (x + y)(x + y + z) и два аналогичных не изменятся.

Задание № 3

У Васи было много прямоугольников размеров 1×14 , 1×35 , 1×36 и 1×39 . Вася сложил из этих прямоугольников квадрат 37×37 , без пропусков и наложений. Оказалось, что при этом использовались прямоугольники ровно двух размеров. Каких?

- \circ 1 × 14:
- \circ 1 × 35;
- \circ 1 × 36;
- \circ 1 × 39.

Ответ: 1 × 35 и 1 × 36.

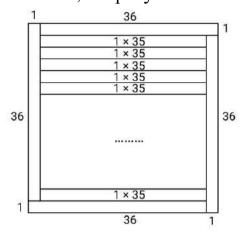
Точное совпадение ответа — 1 балл

Решение.

Прямоугольники размера 1×39 использоваться не могли, так как они не умещаются на доску 37×37 . Осталось три случая.

1) Использовались прямоугольники 1×14 и 1×35 . Этот случай невозможен, так как площадь каждого прямоугольника делится на 7, тогда и площадь квадрата 37×37 должна делиться на 7, что неверно.

- 2) Использовались прямоугольники 1×14 и 1×36 . Этот случай невозможен, так как площадь каждого прямоугольника делится на 2, тогда и площадь квадрата 37×37 должна делиться на 2, что неверно.
- 3) Остался единственный случай использовались прямоугольники 1×35 и 1×36. Он действительно возможен, см. рисунок.



Задание № 4

166 гномов отправились в поход. Они выходили из точки старта в разное время, у каждого гнома своя постоянная скорость. Оказалось, что каждый гном в какой-то момент был впереди всех остальных. Каким по счету финишировал гном, вышедший пятьдесят третьим?

Ответ: 114.

Точное совпадение ответа — 1 балл

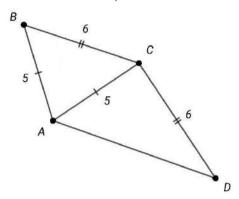
Решение.

Заметим, что любой гном должен когда-то обогнать всех гномов, вышедших до него, иначе он никогда не будет впереди ранее вышедших гномов. Поэтому гномы финишируют в противоположном порядке по отношению к порядку выхода. Тем самым гном, вышедший 53-м, финиширует 53-м с конца, то есть 114 с начала.

Задание № 5

Про выпуклый четырёхугольник АВСО известно, что

$$AB = AC = 5, BC = CD = 6.$$



Какая наибольшая площадь у него может быть?

Ответ: 27.

Точное совпадение ответа — 1 балл

Решение.

Заметим, что площадь треугольника ABC фиксирована, а площадь треугольника ACD считается по формуле $S_{ACD} = \frac{1}{2} \cdot CA \cdot CD \cdot \sin \angle ACD$.

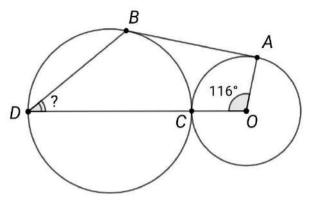
Эта площадь будет максимальной, тогда максимален sin $\angle ACD$, то есть когда $\angle ACD = 90^{\circ}$ и $\sin \angle ACD = \sin 90^{\circ} = 1$.

Площадь треугольника ABC найдем по формуле $S_{ABC} = \frac{1}{2} \cdot BC \cdot h$, где h — высота равнобедренного треугольника ABC из вершины A на основание BC. По теореме Пифагора $h = \sqrt{5^2 - 3^2} = 4$, откуда $S_{ABC} = \frac{1}{2} \cdot 6 \cdot 4 = 12$. Максимальное значение площади треугольника ACD, как было показано ранее, равно $\frac{1}{2} \cdot 5 \cdot 6 \cdot 1 = 15$. В итоге максимальное значение площади четырёхугольника ABCD равно 12 + 15 = 27.

Отметим, что для полноты решения нужно ещё обосновать, что при $\angle ACD = 90^\circ$ четырёхугольник ABCD будет выпуклым, так как это требуется в условии задачи. Но заметим, что $\angle ACB < 90^\circ$ как угол при основани в равнобедренном треугольнике ABC, откуда $\angle BCD < 180^\circ$. Для доказательства того, что $\angle BAD < 180^\circ$ заметим, что $\angle CAD < 90^\circ$ (как острый угол в прямоугольном треугольнике), и что $\angle BAC < 90^\circ$. Последнее можно установить, посчитав косинус этого угла по теореме косинусов. Углы ABC и ADC меньше 180° как углы в треугольниках. Итак, выпуклость четырёхугольника ABCD проверена.

Задание № 6

На картинке ниже изображены две окружности, касающиеся в точке C; O — центр одной из окружностей; AB — их общая внешняя касательная; D — вторая точка пересечения OC и окружности. Известно, что $\angle AOC = 116^{\circ}$. Найдите градусную меру угла $\angle BDC$.

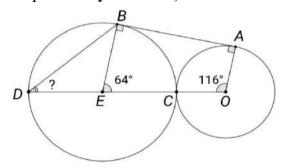


Ответ. 32°.

Точное совпадение ответа — 1 балл

Решение.

Пусть E — центр второй окружности, тогда точки D, E, C и O лежат на одной прямой (как известно, прямая, соединяющая центры двух касающихся окружностей, проходит через точку касания).



Радиусы EB и OA перпендикулярны общей касательной BA, откуда $BE\|AO$, следовательно, $\angle BEC = 180^{\circ} - 116^{\circ} = 64^{\circ}$. Угол BDC является вписанным, поэтому он равен половине центрального угла BEC, то есть $\angle BDC = 64^{\circ}/2 = 32^{\circ}$.

Залание № 7

Квадратное уравнение f(x) = 0 имеет ровно один действительных корень t. Оказалось, что квадратное уравнение

$$f(5x+1) + f(7x-5) = 0$$

также имеет ровно один действительный корень (не обязательно равный t). Найдите все возможные значения числа t.

Ответ: 16.

Точное совпадение ответа — 1 балл

Решение.

Так как квадратное уравнение f(x) = 0 имеет ровно 1 корень, то либо $f(z) \geqslant 0$ для любого z, либо либо $f(z) \leqslant 0$ для любого z. Поэтому сумма неотрицательных/неположительных чисел f(5x+1) и f(7x-5) равна 0, что возможно тогда и только тогда, когда оба они равны 0, то есть когда 5x+1=7x-5=t, где t— единственный корень f(x). Отсюда x=3, t=16.

Задание № 8

Сколько существует возрастающих арифметических прогрессий из 11 членов, каждый из которых — натуральное число от 1 до 440 включительно?

Ответ. 9460.

Точное совпадение ответа — 1 балл

Решение.

Заметим, что разность последнего и первого членов арифметической прогрессии длины 11 делится на 10. И наоборот: если взять любые два числа (от 1 до 440), разность которых делится на 10, то существует единственная арифметическая прогрессия, где эти числа — первое и последнее. В самом деле, если x — меньшее число, а y — большее число, то искомая прогрессия имеет вид $x + k \cdot \frac{y-x}{10}$ при k = 0, 1, 2, ..., 10.

Таким образом, задача свелась к тому, что среди чисел от 1 до 440 надо всеми способами выбрать два различных числа, разность которых делится на 10, то есть два числа с одинаковыми остатками при делении на 10. Это первый и последний члены прогрессии. Так как чисел с каждым остатком при делении на 10 имеется 44, то всего таких пар $10 \cdot C_{44}^2 = 9460$.