
7 класс

Задача №7-Е1. Пшено и вязкость

Методом рядов определяем средний размер зернышек пшена d=2.2 мм (размер зерна может отличаться для разных сортов проса). При этом однократное измерение длины цепочки зерен, состоящей из N штук, оценивается меньшим количеством баллов, чем снятие зависимости длины цепочки от количества зерен в ней, построение графика и определение d, как углового коэффициента полученной прямой.

Определяем высоту столба воды в бутылке $h=25~{\rm cm}$. Проводим 100 измерений времени падения зерен в воде. При использовании в качестве сосуда пластиковой бутылки объемом 1.5 литра ($h=25~{\rm cm}$) время t падения зерен будет варьироваться в диапазоне от 2.0 до 3.0 секунд.

Строим гистограмму распределения результатов измерения по времени. На горизонтальной оси разбиваем диапазон от 2 до 3 секунд на 10 или 20 интервалов по 0.1 или 0.05 секунд соответственно. Над каждым диапазоном строим прямоугольник, высота которого равна количеству измерений, результат которых попадает в этот диапазон. На рисунке приведена гистограмма, полученная автором при разбиении диапазона на 20 интервалов.

Видно, что наиболее вероятное время падения зернышка в данном эксперименте (вершина гистограммы) $\tau=2.45$ с. Используем его для расчета средней скорости падения зерен и коэффициента вязкости воды по формуле, приведенной в условии задачи: $v=\frac{h}{\tau}=\frac{0.25}{2.45}=0.1$ м/с.

$$\begin{split} v &= \frac{h}{\tau} = \frac{0.25}{2.45} = 0.1 \text{ m/c.} \\ \eta &= \frac{d^2 g(\rho_{\text{II}} - \rho_{\text{B}})}{18v} = \frac{(2.2 \cdot 2.2)10^{-6} \cdot 10 \cdot 50}{18 \cdot 0.1} \\ \eta &= 1.3 \cdot 10^{-3} \ \frac{\text{H} \cdot \text{c}}{\text{M}^2} = 1.3 \cdot 10^{-3} \ \frac{\text{K}\Gamma}{\text{M} \cdot \text{C}} = 1.3 \cdot 10^{-3} \ \Pi \text{a} \cdot \text{c} \end{split}$$

(при проверке работы засчитывать как верную любую из трех приведенных единиц измерения коэффициента вязкости).

Табличное значение коэффициента вязкости воды при 20 градусах $\eta_{\text{табл}} = 1.0 \cdot 10^{-3}~\text{Па} \cdot \text{c}.$

Задача №7-Е2. Полипропилен

Приведенные далее числовые значения физических величин получены на авторском комплекте оборудования. На местах параметры трубы и пластилина могут отличаться от авторских.

- 1. Определим массу отрезка трубы $m=10.8\ {\rm r.}$
- 2. Определим объем V_1 внутреннего канала трубы. Для этого закроем один торец трубы пальцем и заполним внутренность трубы водой из шприца, измерив при этом объем вылитой воды $V_1=7.6~{\rm mn}=7.6~{\rm cm}^3.$
- 3. Для измерения внешнего диаметра трубы прокалибруем шкалу шприца в миллиметрах. Длина трубы 60 мм соответствует 44 делениям. Значит одно деление 1.364 мм. Измерим внешний диаметр трубы двумя способами. Первый: непосредственно прикладывая трубу к делениям шкалы шприца определяем, что внешний диаметр трубы D равен 15 делениям, или D=20.5 мм. Второй: разместим трубу на столе на листе бумаги A4, на неподвижной трубе сделаем ручкой или карандашом одну метку одновременно на ее торце и бумаге, прокатим трубу по бумаге на 1 оборот до повторного совпадения метки с поверхностью бумаги, зафиксируем на бумаге новое положение метки, измерим с помощью шкалы шприца длину внешней окружности тубы l=47.5 делений = 64.8 мм. Так как длина окружности $l=\pi D$, находим D=20.6 мм. Для дальнейших расчетов будем использовать среднее значение из двух, полученных разными способами D=20.55 мм.

4. Внешний объем трубы равен

$$V_2 = \frac{\pi D^2}{4} L = \frac{3.14 \cdot 20.55 \cdot 20.55}{4} \cdot 60 = 19890 \text{ mm}^3 = 19.9 \text{ cm}^3.$$

- 5. Объем полипропилена равен $V_0=V_2-V_1=12.3~{\rm cm}^3.$ 6. Плотность полипропилена $\rho_{\rm пp}=\frac{m}{V_0}=\frac{10.8}{12.3}=0.88~{\rm r/cm}^3$ (табличные значения $0.89~{\rm r/cm}^3\leq\rho_{\rm np}\leq0.92~{\rm r/cm}^3).$
- 7. Заполним внутренний объем трубы пластилином без воздушных пузырей. Для плотной упаковки пластилина можно использовать карандаша. Масса трубы с пластилином $m_1=22.6$ г масса пластилина $m_{\rm пл}=m_1-m=11.8$ г. 8. Плотность пластилина $\rho_{\rm пл}=\frac{m_{\rm пл}}{V_1}=\frac{11.8}{7.6}=1.55$ г/см³.

Шифр

7-Е1. Пшено и вязкость

№	Пункт разбалловки	Балл	Пр	Ап
1.1	Описание метода (расчетная формула)	1.0		
	Измерение d			
1.2	Метод 1. таблица зависимости длины цепочки L от количества зерен N	1.0		
1.3	Метод 1. график зависимости $L(N)$	1.0		
1.4	Метод 1. значение <i>d</i> (угловой коэффициент)	1.0		
1.5°	Метод 2. измерение длины нескольких цепочек с разным количеством зерен, расчет d для каждой с последующим усреднением	2.0		
1.6°	Метод 3. измерение длины единственной цепочки зерен и расчет d по результату этого измерения	1.0		
2.1	Наличие таблицы всех результатов	1.0		
2.2	Количество измерений ≥100	4.0		
	— Количество измерений ≥70	3.0		
	— Количество измерений ≥50	2.0		
	Построение гистограммы			
3.1	Подпись осей	0.5		
3.2	Разбиение горизонтальной оси на диапазоны	2.0		
3.3	Построение прямоугольников	0.5		
3.4	Определение наиболее вероятного времени падения зерен $ au$	1.0		
4.1	Измерение высоты столба <i>h</i> воды в сосуде	1.0		
4.2	Вычисление средней скорости падения зерен	1.0		
	Вычисление коэффициента вязкости			
5.1	$0.5 \cdot 10^{-3} \Pi \text{a} \cdot \text{c} \le \eta \le 2.0 \cdot 10^{-3} \Pi \text{a} \cdot \text{c}$	3.0		
	$-0.3 \cdot 10^{-3}$ Πa·c $\leq \eta \leq 3.0 \cdot 10^{-3}$ Πa·c	2.0		
	$-0.2 \cdot 10^{-3}$ Πa·c $\leq \eta \leq 5.0 \cdot 10^{-3}$ Πa·c	1.0		
5.2	Наличие правильной единицы измерения	2.0		

Шифр

7-Е2. Полипропилен

Nº	Пункт разбалловки	Балл	Пр	Ап
	Измерена масса $m \ (\pm 10\%)$ (без единицы измере-		1	
1.1	ния результат не засчитывается)	1.0		
	Измерение объема V_1 внутреннего канала			
	трубы			
1.2	Метод: по объему воды из шприца	2.0		
	— другие методы: (пересчет шкалы шприца и непосред-	1.0		
	ственное измерение диаметра)	1.0		
1.3	Численный результат ($\pm 10\%$) (без единицы изме-	1.0		
1.0	рения результат не засчитывается)			
	Измерение внешнего диаметра трубы			
1.4	Идея пересчета шкалы шприца в миллиметры	1.0		
1.5	Два метода (непосредственное измерение диамет-	2.0		
1.0	ра и прокатка 1 оборот по бумаге) и усреднение	2.0		
	— непосредственное измерение диаметра	1.0		
	— прокатка 1 оборот на бумаге	1.0		
1.6	Внешний диаметр результат ($\pm 10\%$) (без единицы	1.0		
1.0	измерения результат не засчитывается)			
	Вычисление внешнего объема трубы V_2 и			
	объема полипропилена V_0			
1.7	Формула	1.0		
1.8	Результат для $V_2~(\pm 10\%)$ (без единицы измерения	2.0		
1.0	результат не засчитывается)			
1.9	Результат для $V_0~(\pm 10\%)$ (без единицы измерения	1.0		
1.0	результат не засчитывается)			
	Вычисление плотности полипропилена			
1.10	Формула	1.0		
1.11	Результат ($\pm 5\%$) (без единицы измерения резуль-	2.0		
1.11	тат не засчитывается)			
	— Результат ($\pm 10\%$) (без единицы измерения результат не	1.0		
	засчитывается)			
0.1	Вычисление плотности пластилина	0.0		
2.1	Метод: заполнение трубы, измерение массы	2.0		
	— метод: измерение размеров исходного брикета	1.0		
2.2	Результаты измерения необходимых величин	1.0		
	(масса, размеры) в соответствии с выбранным ме-	1.0		
	тодом ($\pm 10\%$)			

2.3	Вычисление плотности пластилина $\rho_{\text{пл}}$, результат $(\pm 5\%)$ (без единицы измерения результат не засчитывается)	2.0	
	— результат ($\pm 10\%$) (без единицы измерения результат не засчитывается)	1.0	