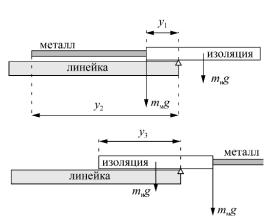
Задание 9.1. Плотность провода III

Вам выдан образец одножильного провода длиной L= 600 мм. На половине его длины изоляция удалена. Определите массу, объём и плотность ($m_{\rm M}$, $V_{\rm M}$, $\rho_{\rm M}$) металла, а также массу, объём и плотность ($m_{\rm H}$, $V_{\rm H}$, $\rho_{\rm H}$) изоляции провода.

В процессе решения поставленной задачи используйте провод в качестве рычага и исследуйте зависимость какой-либо длины на рычаге в положении равновесия от массы размещённого на нём груза. Постройте график полученной зависимости в координатах, в которых эта зависимость является линейной. Погрешность оценивать не требуется.

Примечание 1. Длина окружности $X = \pi D$, где D – диаметр этой окружности. Площадь круга $S = \pi D^2/4$; $\pi = 3,14$.

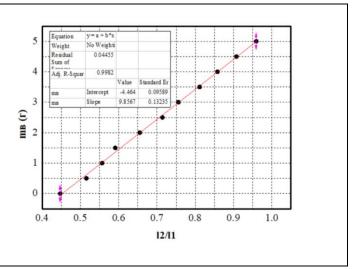
Примечание 2. Изгибать провод запрещено!


Примечание 3. Снимать изоляцию с проволоки категорически запрещено.

Оборудование: образец провода длиной L = 600 мм, линейка 40 см, 2 шприца объёмом 5 мл, и 1 мл; стакан с водой, гибкая трубка, нитка, салфетка, миллиметровая бумага для построения графика.

Решение.

1. Определим отношение $\alpha = m_{\text{м}}/m_{\text{и}}$. Для повышения точности сделаем это трижды. Расположим центр тяжести системы провод изоляция на краю линейки при двух положениях провода и измерим три различных расстояния y_1 , y_2 , y_3 (рис.1).


Ниже записано правило моментов для каждого измерения, приведены экспериментальные значения y_1 , y_2 , и y_3 , вычислены значения α_1 , α_2 , α_3 и среднее значение $\alpha = 6.93$.

$$\begin{split} m_{_{\rm M}}y_1 &= m_{_{\rm H}}\left(\frac{L}{4} - y_1\right); \quad \alpha_1 = \frac{m_{_{\rm M}}}{m_{_{\rm H}}} = \frac{L}{4y_1} - 1; \qquad y_1 = 18 \text{mm}; \quad \alpha_1 = 6,78 \\ m_{_{\rm M}}\left(y_2 - \frac{L}{2}\right) &= m_{_{\rm H}}\left(\frac{3L}{4} - y_2\right); \quad \alpha_2 = \frac{m_{_{\rm M}}}{m_{_{\rm H}}} = \frac{\frac{3}{4}L - y_2}{y_2 - \frac{L}{2}}; \quad y_2 = 297 \text{mm}; \quad \alpha_2 = 7,23 \\ m_{_{\rm M}}\left(\frac{L}{2} - y_3\right) &= m_{_{\rm H}}\left(y_3 - \frac{L}{4}\right); \quad \alpha_2 = \frac{m_{_{\rm M}}}{m_{_{\rm H}}} = \frac{\left(y_3 - \frac{L}{4}\right)}{\left(\frac{L}{2} - y_3\right)}; \quad y_3 = 262 \text{ mm}; \quad \alpha_3 = 6,77 \\ \alpha_{_{\rm CD}} = 6,93 \end{split} \tag{1}$$

2. Повесим шприц на край провода (рис.2). Массу пустого шприца обозначим $m_{\rm ш}$. Уравновесим провод на крае стола. Измерим зависимость расстояния l_1 от массы воды в шприце. Величину l_2 рассчитаем косвенно на основе данных об l_1 и положения центра масс провода.

$m_{\rm B}$, Г	l_1 , cm	l_2 , cm	l_2/l_1
0.0	19.9	8.9	0.447
0.5	19	9.8	0.516
1.0	18.5	10.3	0.557
1.5	18.1	10.7	0.591
2.0	17.4	11.4	0.655
2.5	16.8	12	0.714
3.0	16.4	12.4	0.756
3.5	15.9	12.9	0.811
4.0	15.5	13.3	0.858
4.5	15.1	13.7	0.907
5	14.7	14.1	0.959

Уравнение моментов для системы провод-шприц.

$$m_{\scriptscriptstyle \Pi}l_2=(m_0+m_{\scriptscriptstyle \rm B})l_1$$

Или после преобразования

$$m_{\scriptscriptstyle \rm II}\frac{l_2}{l_{\scriptscriptstyle 1}}=m_0+m_{\scriptscriptstyle \rm B}$$

Как видно, зависимость $m_{\rm B}(l_2/l_2)$ линейная. Построим график этой зависимости. По угловому коэффициента графика определим массу провода $m_{\rm H}=9,86~{\rm F}$.

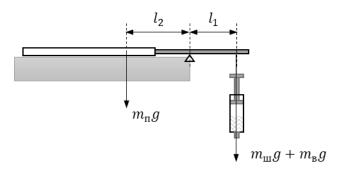


Рис. 2

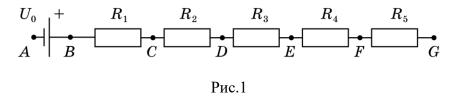
Рассчитаем с помощью отношения массы изоляции к массе всего провода массу изоляции и массу провода.

$$m_{\scriptscriptstyle \mathrm{M}} = m_{\scriptscriptstyle \mathrm{II}} rac{lpha_1}{lpha_1 + 1} = 8.61 \, \Gamma$$
 $m_{\scriptscriptstyle \mathrm{II}} = m_{\scriptscriptstyle \mathrm{II}} rac{1}{lpha_1 + 1} = 1.24 \, \Gamma$

3. Одним из возможных способов измерения диаметра металлической части провода и внешнего диаметра изоляции является прокатывание по линейке. Однако, учитывая длину провода и наличие только одной линейки, реализовать прокатывание с достаточным количеством оборотов (не менее 10) без проскальзывания весьма затруднительно. Тем не менее, использование этого способа при тщательном проведении эксперимента может дать приемлемые результаты, и его тоже следует засчитывать при оценивании работы.

Предлагается измерять объём провода без изоляции и в изоляции путём измерения (при помощи шприца) объёма воды, которая заполняет гибкую трубку с проводом и без провода.

Поместим в трубку $v_1 = 1.00$ мл воды с помощью шприца. Вода займет длину равную $x_1 = 8.7$ см, при помещении провода концом с изоляцией длина становится равной $x_2 = 15$ см. Поместим в трубку $v_2 = 2.5$ мл воды, вода займет в трубке $x_3 = 22.4$ см, при помещении в трубку провода с зачищенным концом длина столбика воды становится равной $x_4 = 26.2$ см. Таким образом, сечение провода:


$$S_{\pi} = v_2(1/x_1 - 1/x_2) = 0,0162 \text{ cm}^2$$

$$S_{\mu} = v_1(1/x_1 - 1/x_2) - S_{\pi} = 0,0321 \text{ cm}^2$$

Вычисляем плотности:

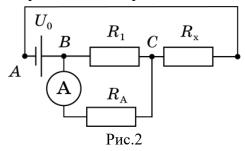
$$\rho_{\rm M} = \frac{m_{\rm M}}{V_{\rm M}} = \frac{8,61}{56*0,0162} = 9,5 \text{ r/cm}^3,$$

$$\rho_{\rm H} = \frac{m_{\rm H}}{V_{\rm H}} = \frac{1,24}{28*0,0321} = 1,38 \text{ 3r/cm}^3.$$

Задание 9.2. Серый ящик — магазин. С помощью серого ящика, содержащего источник напряжения U_0 и «магазин» сопротивлений (набор пяти резисторов, включённых последовательно) (рис.1), определите величины внутренних сопротивлений $R_{\rm A1}$, $R_{\rm A2}$ и $R_{\rm A3}$ мультиметра, используемого в качестве амперметра в диапазонах 200 мА, 20 мА, и 2000 мкА. Для выполнения задания исследуйте зависимость силы тока через амперметр от величины сопротивления в цепи его включения. Выведите формулу, связывающую измеренные вами физические величины между собой. Постройте график полученной зависимости в координатах, в которых эта зависимость является линейной.

Оборудование: серый ящик; мультиметр; два провода штекер-крокодил, два провода крокодил-крокодил, миллиметровая бумага для построения графиков (3 листа формата А5).

Примечания:


- 1. Мультиметр в режиме амперметра разрешается подключать только (**строго!!**) к контактам B и C серого ящика.
- 2. Пользоваться другими режимами мультиметра можно.
- 3. Тщательно продумывайте последовательность своих действий и подробно описывайте их. В случае сжигания предохранителя, находящегося внутри мультиметра, его замена на исправный производиться не будет.
- 4. Источник напряжения считайте идеальным.
- 5. Если зависимость какой-либо физической величины Y от другой величины X представляет собой дробь, в числителе которой имеется только одно слагаемое, а в знаменателе несколько слагаемых, то анализ этой зависимости существенно упрощается, если перейти к равенству обратных величин левой и правой части уравнения.

Возможное решение.

Измерим сопротивление щупов мультиметра: $R_{\rm III} = 1.4~{\rm Om.}$

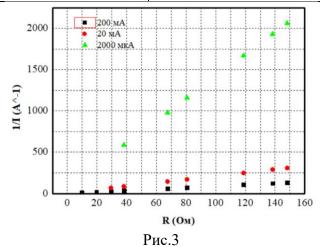
С помощью мультиметра в режиме омметра определим величины резисторов в сером ящике и вычтем сопротивление щупов из показаний: R_1 = 5.1 Ом, R_2 = 9.8 Ом, R_3 = 19.6 Ом, R_4 = 38.1 Ом, R_5 = 80.6 Ом.

- 1. С помощью мультиметра в режиме вольтметра определим напряжение источника: $U_0 = 1,534 \text{ B}.$
- 2. Подключим амперметр к контактам B и C серого ящика, а контакт A соединим с одним из контактов D-G (замкнём цепь). Таким образом, амперметр оказывается подключённым к делителю напряжения по схеме, приведённой на рис.2.

3. Обозначим внутреннее сопротивление амперметра вместе с щупами $R'_{\rm A}$ и вычислим, как зависит сила тока I через амперметр от величины сопротивления $R_{\rm x}$:

$$I = \frac{U_0}{R_{\chi} + \frac{R_1}{R_1 + R'_A}} \frac{R_1}{R_1 + R'_A} = \frac{U_0 R_1}{R_{\chi} R_1 + R_{\chi} R'_A + R_1 R'_A}$$
или
$$\frac{1}{I} = \left(\frac{R_1 + R'_A}{U_0 R_1}\right) R_{\chi} + \frac{R'_A}{U_0}$$

$$(1)$$


Видно, что I^{-1} является линейной функцией $R_{\rm x.}$

4. Установим на амперметре предел измерения 20 мА. Замыкая проводом контакты серого ящика в различных комбинациях, снимем зависимость I от $R_{\rm x}$ и вычислим значения I^{-1} . Результаты заносим в таблицу 1.

Предел	200 мА	20 мА	2000 мкА	200 мА	20 мА	2000 мкА
R, Om	I, mA	I, mA	I, mA	1/ <i>I</i> , мА ⁻¹	1/ <i>I</i> , мА ⁻¹	1/ <i>I</i> , мА ⁻¹
9.8	96.4			10.4		
29.4	36.1	14.66		27.7	68.2	
67.5	16.3	6.86	1021	61.3	145.8	979.4
148.1	7.6	3.24	485	131.6	308.6	2061.9
138.3	8.1	3.44	518	123.5	290.7	1930.5
118.7	9.4	4.02	599	106.4	248.8	1669.4
80.6	13.7	5.82	864	73.0	171.8	1157.4
38.1	28.4	11.63	1702	35.2	86.0	587.5
19.6	52.4			19.1		

5. Построим графики полученных зависимостей. (Рис.3). Из графиков найдем их угловые коэффициенты и, соответственно, сопротивления мультиметра.

Диапазон	$k = \frac{\Delta (1/I)}{\Delta R_X}, \mathbf{B}^{-1}$	$R_{\scriptscriptstyle A} = k U_{\scriptscriptstyle 0} R_{\scriptscriptstyle 1} - R_{\scriptscriptstyle 1} - R_{\scriptscriptstyle n}$, Ом
200 мА	0.878	0.37
20 мА	2.03	9.4
2000 мкА	13.41	98

В режиме 200 мА сопротивление амперметра сравнимо с внутренним сопротивлением источника напряжения, которое для щелочной батарейки типа АА составляет величину порядка 0,5 Ом и, следовательно, для более точного определения R_A в диапазоне 200 мА батарейку нельзя считать идеальной.

Находить величину R_A следует именно по наклону прямой, описываемой уравнением (1). Определять эту величину по точке пересечения прямой с вертикальной осью не следует, так как при оптимальном для построения графика масштабе эта точка находится слишком близко к нулю.

Следует также заметить, что особенностью предложенного метода определения R_A является возможность использования одного делителя напряжения для трёх пределов измерения амперметра. Это обусловлено тем, что текущий по делителю минимальный ток порядка 0,01 A на разных диапазонах по-разному распределяется между R_1 и амперметром. В диапазоне 2 мA через амперметр течёт 4,8% общего тока ($R_A = 98$ Ом), в диапазоне 20 мA – 33% и в диапазоне 200 мA порядка 75-80%. Таким образом удаётся исследовать зависимость I от $R_{\rm x}$ во всех диапазонах без каких- либо изменений в схеме включения амперметра.

Включение амперметра последовательно с делителем напряжения не даёт возможности определить R_A в диапазоне 2 мА , так как минимальная сила тока в этом случае будет порядка 6 мА, что в 3 раза превышает предел измерения прибора. В диапазонах 20 мА и 200 мА исследование в таком режиме возможно, и оно должно подтверждать полученные результаты.